Interpreting the Results from Multiple Regression and Structural Equation Models
نویسندگان
چکیده
منابع مشابه
Interpreting Complex Regression Models
Interpretation of a machine learning induced models is critical for feature engineering, debugging, and, arguably, compliance. Yet, best of breed machine learning models tend to be very complex. This paper presents a method for model interpretation which has the main benefit that the simple interpretations it provides are always grounded in actual sets of learning examples. The method is valida...
متن کاملClassification of structural equation models based on fuzzy regression
Structural equation models (SEM) are reference techniques for measuring causeeffect relationships in complex systems. In many real cases observations are a priori grouped into homogeneous segments according to a specific characteristic, so that different models can be assessed for each segment. The present paper proposes to adopt an Euclidean metric based on the model parameters in order to det...
متن کاملQuantile regression methods for recursive structural equation models
Two classes of quantile regression estimation methods for the recursive structural equation models of Chesher (2003) are investigated. A class of weighted average derivative estimators based directly on the identification strategy of Chesher is contrasted with a new control variate estimation method. The latter imposes stronger restrictions achieving an asymptotic efficiency bound with respect ...
متن کاملInterpreting regression models in clinical outcome studies.
Measuring the outcome of an intervention is central to the practice of evidence based medicine, and most research papers evaluating patient outcomes now incorporate some form of patient-based metric, such as questionnaires or performance tests. Once an outcome has been defined, researchers typically want to know if any other factors can influence the result. This is typically assessed with regr...
متن کاملMultilevel Regression and Multilevel Structural Equation Modeling
Multilevel modeling in general concerns models for relationships between variables defined at different levels of a hierarchical data set, which is often viewed as a multistage sample from a hierarchically structured population. Common applications are individuals within groups, repeated measures within individuals, longitudinal modeling, and cluster randomized trials. This chapter treats the m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Ecological Society of America
سال: 2005
ISSN: 0012-9623
DOI: 10.1890/0012-9623(2005)86[283:itrfmr]2.0.co;2